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criterion: They have higher energies in the ex-
perimentally biased optimization.

For the proteins in our set in the ~30-kD
molecular-weight range, the computed structures
are not completely converged and have large dis-
ordered regions. This is clearly a sampling prob-
lem because the native structure has lower energy
(Fig. 4C and fig. S3); even with the NMR data as
a guide, Rosetta trajectories fail to sample very
close to the native state. Increased convergence
on the low-energy native state can be achieved
either by collecting and using additional experi-
mental data (1ilb_2 in fig. S3) or by improved
sampling. Though at present the former is the
more reliable solution, the latter will probably
become increasingly competitive as the cost of
computing decreases and conformational search
algorithms improve.

We have shown that accurate structures can
be computed for a wide range of proteins using
backbone-only NMR data. These results suggest
a change in the traditional NOE-constraint–based
approach to NMR structure determination (fig.
S4). In the new approach, the bottlenecks of
side-chain chemical-shift assignment andNOESY
assignment are eliminated, and instead, more back-
bone information is collected: RDCs in one ormore
media and a small number of unambiguous HN-
HN constraints from three- or four-dimensional
experiments, which restrict possible b-strand regis-
ters. Advantages of the approach are that 1H,15N-
based NOE and RDC data quality is relatively
unaffected in slower tumbling, larger proteins and
that the analysis of resonance and NOESY peak
assignments can be done in a largely automated
fashion with fewer opportunities for error. The
approach is compatible with deuteration neces-
sary for proteins greater than 15 kD and, for
larger proteins, can be extended to include
methyl NOEs on selectively protonated samples.
The method should also enable a more complete

structural characterization of transiently popu-
lated states (25) for which the available data are
generally quite sparse.
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Limits of Predictability in
Human Mobility
Chaoming Song,1,2 Zehui Qu,1,2,3 Nicholas Blumm,1,2 Albert-László Barabási1,2*

A range of applications, from predicting the spread of human and electronic viruses to city
planning and resource management in mobile communications, depend on our ability to foresee
the whereabouts and mobility of individuals, raising a fundamental question: To what degree is
human behavior predictable? Here we explore the limits of predictability in human dynamics by
studying the mobility patterns of anonymized mobile phone users. By measuring the entropy of
each individual’s trajectory, we find a 93% potential predictability in user mobility across the
whole user base. Despite the significant differences in the travel patterns, we find a remarkable
lack of variability in predictability, which is largely independent of the distance users cover on a
regular basis.

When it comes to the emerging field of
human dynamics, there is a funda-
mental gap between our intuition and

the current modeling paradigms. Indeed, al-

though we rarely perceive any of our actions to
be random, from the perspective of an outside
observer who is unaware of our motivations and
schedule, our activity pattern can easily appear

random and unpredictable. Therefore, current
models of human activity are fundamentally
stochastic (1) from Erlang’s formula (2) used in
telephony to Lévy-walk models describing hu-
man mobility (3–7) and their applications in viral
dynamics (8–10), queuing models capturing hu-
man communication patterns (11–13), and mod-
els capturing body balancing (14) or panic (15).
Yet the probabilistic nature of the existing mod-
eling framework raises fundamental questions:
What is the role of randomness in human be-
havior and to what degree are individual human
actions predictable? Our goal here is to quantify
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Boston, MA 02115, USA. 2Department of Medicine, Harvard
Medical School, and Center for Cancer Systems Biology, Dana-
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Science and Technology of China, Chengdu 610054, China.
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biogeographic patterns. Their study, too, is

centered on a large database, but in this case it

is entirely of living organisms, the marine

bivalves. Over 28,000 records of bivalve gen-

era and subgenera from 322 locations around

the world have now been compiled by these

authors, giving a global record of some 854

genera and subgenera and 5132 species. No

fossils are included in the database, but

because bivalves have a good fossil record, it is

possible to estimate accurately the age of ori-

gin of almost all extant genera. It is then possi-

ble to plot a backward survivorship curve (8)

for each of the 27 global bivalve provinces (9). 

On the basis of these curves, Krug et al. find

that origination rates of marine bivalves in-

creased significantly almost everywhere im-

mediately after the K-Pg mass extinction event.

The highest K-Pg origination rates all occurred

in tropical and warm-temperate regions. A dis-

tinct pulse of bivalve diversification in the early

Cenozoic was concentrated mainly in tropical

and subtropical regions (see the figure). 

The steepest part of the global backward

survivorship curve for bivalves lies between 65

and 50 million years ago, pointing to a major

biodiversification event in the Paleogene (65 to

23 million years ago) that is perhaps not yet

captured in Alroy et al.’s database (5, 7). The

jury is still out on what may have caused this

event. But we should not lose sight of the fact

that the steep rise to prominence of many mod-

ern floral and faunal groups in the Cenozoic

may bear no simple relationship to climate or

any other type of environmental change (10, 11).
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PERSPECTIVES

W
e live life in the network. We check

our e-mails regularly, make mobile

phone calls from almost any loca-

tion, swipe transit cards to use public trans-

portation, and make purchases with credit

cards. Our movements in public places may be

captured by video cameras, and our medical

records stored as digital files. We may post blog

entries accessible to anyone, or maintain friend-

ships through online social networks. Each of

these transactions leaves digital traces that can

be compiled into comprehensive pictures of

both individual and group behavior, with the

potential to transform our understanding of our

lives, organizations, and societies. 

The capacity to collect and analyze massive

amounts of data has transformed such fields as

biology and physics. But the emergence of a

data-driven “computational social science” has

been much slower. Leading journals in eco-

nomics, sociology, and political science show

little evidence of this field. But computational

social science is occurring—in Internet compa-

nies such as Google and Yahoo, and in govern-

ment agencies such as the U.S. National Secur-

ity Agency. Computational social science could

become the exclusive domain of private com-

panies and government agencies. Alternatively,

there might emerge a privileged set of aca-

demic researchers presiding over private data

from which they produce papers that cannot be

critiqued or replicated. Neither scenario will

serve the long-term public interest of accumu-

lating, verifying, and disseminating knowledge.

What value might a computational social

science—based in an open academic environ-

ment—offer society, by enhancing understand-

ing of individuals and collectives? What are the

A field is emerging that leverages the 

capacity to collect and analyze data at a 

scale that may reveal patterns of individual

and group behaviors.
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Data from the blogosphere. Shown is a link structure within a community of political blogs (from 2004),
where red nodes indicate conservative blogs, and blue liberal. Orange links go from liberal to conservative,
and purple ones from conservative to liberal. The size of each blog reflects the number of other blogs that
link to it. [Reproduced from (8) with permission from the Association for Computing Machinery]
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23 million years ago) that is perhaps not yet
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Figure 1. Bluetooth signal strength (RSSI) as a function of distance. A: Scans between two phones.
Measurements are per distance performed every five minutes over the course of 7 days. Mean value and
standard deviation per distance are respectively µ

0

= �45.13± 1.56 dBm, µ
1

= �77.48± 4.15 dBm,
µ
2

= �82.03± 4.57 dBm, and µ
3

= �85.49± 2.75 dBm. B: Average of the values in respective time-bins.
Summary statistics are: µavg

0

= �45.13± 1.20 dBm, µavg

1

= �77.46± 2.90 dBm, µavg

2

= �81.99± 3.17 dBm, and
µavg

3

= �85.45± 1.88 dBm. C: Maximal value per time-bin. The mean value and standard deviation per
distance are: µmax

0

= �44.41± 1.11 dBm, µmax

1

= �75.09± 3.24 dBm, µmax

2

= �79.25± 3.47 dBm, and
µmax

3

= �83.88± 2.00 dBm.

Removing links

This section outlines various strategies for removing links from the network. Fig. 4A shows an illustration
of the raw proximity data for a single time-bin, a link is drawn if either i ! j or j ! i. Thickness of
a link represents the strength of the received signal. For the thresholded network (Fig. 4B) we remove
links according to the strength of the signal (where we assume the weaker the signal the greater the
relative distance between two persons). To estimate the e↵ect of the threshold we compare it to a null
model, where we remove the same number of links, but where the links are chosen at random, illustrated
Fig. 4C. To minimize any noise the random removal might cause, we repeat the procedure n = 100
times, each time choosing a new set of random links, with statistics averaged over the 100 repetitions.
To check whether thresholding actually emphasizes face-to-face links, we additionally compare it to a
control network, where we remove links with signal strengths above or equal to the threshold, Fig. 4D;
this procedure is also repeated multiple times. In a situation where there are more links below the
threshold than above, we will remove fewer links for the latter compared to the other networks.

5

Figure 2. Distributions of signal strength for the respective distances. A: Raw data. Measurements
from both phones are statistically indistinguishable and are collapsed into single distributions, i.e. there is no
di↵erence between whether A ! B or B ! A. B: Average of signal strength per time-bin. C: Maximal value of
signal strength per. time-bin.

Results

Network properties

Now that we have determined a threshold for filtering out noisy links, let us study the e↵ects on the
network properties. Thresholding weak links does not significantly influence the number of nodes present
(N) in the network (Fig. 5A), while the number of links (M) is substantially reduced (Fig. 5B). On
average we remove 2.38 nodes and 32.18 links per time-bin. Social networks di↵er topologically from
other kinds of networks by having a larger than expected number of triangles [37], thus clustering is a key
component in determining the e↵ects of thresholding. Fig. 6 reveals a strong hint that we are, in fact,
keeping real social interactions: random removal disentangles the network and dramatically decreases
the clustering coe�cient, while thresholding conserves most of the average clustering. Average clustering
ratio (hhc

T

i/hc
N

ii) reveals that the clustering in the thresholded network compared to the null model
network on average is 2.38 times larger. These findings suggest that a selection process based on signal
strength greatly di↵ers from that of a random one.
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Figure 7. Link evaluation. A: Probability of link reappearance. For each selection process we remove a
specific set of links. Thresholded, removes links with weak signal strength, Null, removes randomly chosen links,
while the Control removes strong links. The probability for links to reappear within all the next n time-steps is
calculated using Equation 1 and averaging over all time-bins. Boundary conditions are not applied and the
reappearance probability for the last n = 5 bins is not taken into account. B: Average weights. For each
time-bin we calculate w

t

/w
t,background

, where the background weight includes links present in bin t. Brackets
indicate a temporal average across all time-bins, and red line denotes the average background weight.

Discussion

The availability of electronic datasets is increasing, so the question of how well can we use these electronic
clicks to infer actual social interactions is important for e↵ectively understanding processes such as
relational dynamics, and contagion. Sorting links based on their signal strength allows us to distinguish
between strong and weak ties, and we have argued there that thresholding the network boosts the social
signal while eliminating some noise.

The proposed framework is not perfect, in certain settings we remove real social connections while
noisy links are retained. The results indicate that the framework is better at identifying strong links than
removing them. A trend which the link-reappearance probability, link-weights, and online friendship
analysis support. Compared to the baseline we achieve better results than just assuming all proximity
observations as real social interactions. But determining whether a close proximity link is an actual
friendship is much more di�cult. Multiple scenarios exist where people are in close contact but are not
friends, one obvious example is queuing. Each human interaction has a specific social context, so an
understanding of the underlying social fabric is required to fully discern when a close proximity link is
an actual face-to-face meeting. This brings us back to the question of how to determine a real friendship
from digital observations (cf. [1]). Face-to-face meetings may not be the best indicator of friendship; call
logs, text logs, and geographical positions are all factors which coupled with Bluetooth could give us a
better insight into social dynamics and interactions.
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Figure 3. Number of links per type as a function of threshold value. Links are classified as weak if
they are observed less than 120 times in the data, i.e. links that on average are observed less than once per
day—otherwise they are classified as strong. Grouping students into study lines, reveals that links within each
study line have an almost uniform distribution of weights while links across study lines are distributed according
to a heavy-tailed distribution. A threshold of �80 dBm (gray area) removes 1159 weak and 387 strong links and
classifies 97.6% of inter-study line links as weak and 86.7% of intra-study line links as strong.

Figure 4. Networks. A: Raw network; shows all observed links for a specific time-bin. Thickness of a link
symbolizes the maximum of the received signal strengths. B: Thresholded network, we remove links with
received signal strengths below a certain threshold, where dotted lines indicate the removed links. C: Null
model; with respect to the previous network we remove the same amount of links, but where the links are
chosen at random. D: Control network, links with signal strength above or equal to the threshold are removed.

Link evaluation

Sorting links by signal strength and disregarding weak ones greatly reduces the number of links, but do
we remove the correct links, i.e. do we get rid of noisy, non-important links? The fact that clustering
remains high in spite of removing a large fraction of links is a good sign, but we want to investigate this
question more directly. To do so, we divide the problem into two timescales; a short where we consider
the probability that a removed link might reappear a few time-steps later, and a long where we evaluate
the quality of a removed link according to certain network properties. The motivation for both time-scales
is simple. Let’s first consider the short time-scale. We assume that human interactions take place on
a time-scale that is mostly longer than the 5-minute time-bins we analyze here. Thus, if a noisy link
is removed, the probability that it will re-appear in one of the immediately following time-steps should
be low, since no interaction is assumed to take place. We do expect the probability of reappearance in
subsequent timesteps to be significantly greater than zero, since even weak links imply physical proximity.
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Vaccination of real social communities
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Vaccination is a primary counter-measure against infectious diseases. In this context, knowl-

edge of the social ties between members of a community allows for sophisticated immuniza-

tion strategies that exploit the inherent characteristics of social networks. State-of-the-art

methods designed to identify optimal vaccination target groups in social networks implicitly

assume that social networks, as defined by Facebook friends or telecommunication contacts,

are similar to the networks of physical contacts that enable actual disease spreading. The

nature of the relationship between the network of social ties and the corresponding network

of physical contacts, however, has yet to be explored fully for a large population of human ac-

tors. Based on epidemic simulations running on networks of real-world physical proximity,

we show that the disease transmission network can differ significantly from the correspond-

ing social networks. This finding has two key implications. Firstly we find that it is possible

to perform early outbreak detection by monitoring individuals that are central in the social

network. Secondly we show that targeted vaccination based on social network structure can

fail to reduce the outbreak size significantly. Specifically, the efficacy of vaccination depends

1



full-range proximity
short-range proximity
Facebook
call

a

mon tue wed thu fri sat sun�
�.�
�.�

time

hk
i/
hk
i m

ax

b

� ��� ��� ��� ����

�.��

�.��

k

P(
k) � ��� ���

�
�.�
�

k

�-
F(
k)

c

� � �� �� �� ���
�.�
�.�
�.�
�.�

k

P(
k)

� �� ��
�

�.�
�

k

�-
F(
k)

d

��� ��� ��� ��� ���
�

�.�
�.�
�.�
�.�
�

da
y

w
ee
k

m
on
th

t [hours]

S/
GC

e

�.�� �.� ��
�.�
�.�
�.�
�.�
�

�� fedge

GC



a

�

�

��

��

short-range

in
fe
ct
io
n
tim

e
[d
ay
s]

random colocation (optimal)
Facebook call

�� �� �� �� ���

�

�

�

long-range

number of monitored individuals

b
� �.� �.� �.� �.� ��
�
�
�

i

p(
i)

� �.� �.� �.� �.� ��
�
�
�

i

p(
i)

� �.� �.� �.� �.� ��
�
�
��

i

p(
i)

� �.� �.� �.� �.� ��
�
�
�

i

p(
i)

� �.� �.� �.� �.� ��
�
�
�

i

p(
i)

� �.� �.� �.� �.� ��
�
�
�

i

p(
i)

�

�.�

�.�

�.�

�.�
short-range

re
la
tiv
e
ou
tb
re
ak
siz
e � �.� �.��

�.�

�.�

fv

re
l.
di
�.

� �.� �.� �.� �.� �.� �.��
�.�
�.�
�.�
�.�
�.�

long-range

fraction of vaccinated individuals

� �.� �.��

�.�

�.�

fv

re
l.
di
�.



i
i

“pnas” — 2016/1/27 — 13:37 — page 1 — #1 i
i

i
i

i
i

The fundamental structures of dynamic social
networks
Vedran Sekara ⇤, Arkadiusz Stopczynski ⇤ †, and Sune Lehmann ⇤ ‡

⇤Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark,†Media Lab, Massachusetts Institute of Technology,

Cambridge, MA, USA, and ‡The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Social systems are in a constant state of flux with dynamics spanning
from minute-by-minute changes to patterns present on the timescale
of years. Accurate models of social dynamics are important for un-
derstanding spreading of influence or diseases, formation of friend-
ships, or the productivity of teams. While there has been much
progress on understanding complex networks over the past decade,
little is known about the regularities governing the micro-dynamics
of social networks. Here we explore the dynamic social network of a
densely-connected population at high temporal resolution, uncover-
ing dynamic social structures expressed on multiple timescales. We
show that high-resolution data allow us to observe social gatherings
directly, rendering community detection unnecessary. On the hourly
timescale, we find that gatherings are fluid, with members coming
and going, but organized via a stable core of individuals. Each core
represents a social context. Cores exhibit a pattern of recurring
meetings across weeks and months, each with varying degrees of
regularity. Taken together, these findings provide a powerful sim-
plification of the social network as a whole, resulting in a compact
description for quantifying the complexity of dynamic social networks.
Using this framework, we are able to explore the complex interplay
between social and geospatial behavior, and we demonstrate that
in analogy to human mobility, social behavior can be predicted with
high precision.

complex networks | social systems | human dynamics | computational social

science

Human societies, their organizations, and communities
give rise to complex social dynamics that are challenging

to understand, describe, and predict. Recently, network sci-
ence has provided a powerful mathematical framework for de-
scribing the structure and dynamics of social systems [1, 2, 3].
With deep roots in the traditional sociology [4, 5], a central
challenge in the description of social systems is understanding
social group behavior. Using empirical data, such groups (or
communities) have recently been shown to be highly overlap-
ping and organized in a hierarchical manner [6, 7, 8, 9]. With-
out an understanding of the fundamental meso-level structures
and regularities governing social systems, modeling and pre-
dicting behavioral patterns remains a challenge [10, 11].
While a coherent mathematical framework is not yet in

place, existing research suggests that social dynamics are far
from random. For example, the existence of strong regulari-
ties for individuals in human populations has been well docu-
mented within mobility patterns [12, 13, 14, 15], and in social
systems, pair-wise interactions show clear patterns occurring
at multiple timescales from seconds to months [16]. For groups
of interacting individuals, however, an understanding of the
fundamental structures and their temporal evolution across
timescales has proven illusive so far, suggesting a potential for
a better understanding and models describing important pro-
cesses such as spreading of influence or diseases, formation of
friendships, or productivity of teams.
Our work is based on a longitudinal (36 months) high-

resolution dataset describing a densely-connected population
of approximately 1 000 freshman students at a large European
university [17]. We consider interactions in network of phys-
ical proximity measured via Bluetooth (see methods), com-

plemented with information from telecommunication networks
(phone calls and text messages), online social media (Facebook
messages), as well as geo-location and demographic data. This
dataset allows us to analyze social dynamics expressed through
multiple channels and at a highly granular level [17, 18, 19, 20],
rather than focusing only on a particular channel such as call
records [7, 21], emails [22], or social media networks [23, 24].
Until this point, community detection in dynamic networks

has required complex mathematical heuristics [7, 25, 26]. Here
we show that with high-resolution data describing social in-
teractions, community detection is unnecessary. When single
time slices are shorter than the rate at which social gatherings
change, communities of individuals can be observed directly
and with little ambiguity (Fig. 1). Using a simple matching be-
tween time slices we can infer temporal communities. These
dynamic communities o↵er a powerful simplification of the
complex system of social interactions as it develops over time.
Based on these fundamental structures, we are able to show

Fig. 1. Social network at di↵erent timescales. a, The network
formed by face-to-face meetings within one day (green), 60-minute (orange), and
5-minute temporal aggregation (blue). b, Corresponding adjacency matrices sorted
according to size of connected components. In the 5-minute time-slices groups are
directly observable without much ambiguity, but the overlap between groups increases
as time is aggregated across bins.
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Figure 1: Properties of gatherings. (A) The network formed by physical proximity within
one day (green), 60-minute (orange), and 5-minute temporal aggregation (blue). (B) Cor-
responding adjacency matrices sorted according to connected components. Groups are di-
rectly observable for short time-slices, but become overlapping as more time is aggregated in
each bin. (C) Illustration of gathering dynamics. Gatherings change gradually with mem-
bers flowing in and out of social contexts, participation in a gathering is given by at least
one co-presence link. (D) Real world gatherings have soft boundaries, with nodes organized
into a stable core with periphery nodes of lower participation levels. Node-size corresponds
to participation. (E) The stability of gatherings as a function of duration. Global stability
is defined as

Ptdeath
tbirth

J(gt, G)/(tdeath � tbirth), where J denotes the Jaccard similarity and G is
the aggregated network of slices (G = gbirth [ · · · [ gdeath) while local stability is defined asPtdeath�1

tbirth
J(gt, gt+1)/(tdeath � tbirth � 1).
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Figure 2: Cores summarize social contexts for individuals. (A) The distributions of work and
recreational core membership, inset shows participation across both categories. Participation in
recreational cores reveals that individuals typically participate in only one or two recreational
contexts, although the tail of the distribution show some individuals with more gregarious be-
havior. The distribution of work cores is localized, with an average of 2.74 ± 1.85 work cores
per individual, mainly reflecting participation in classes or group work. (B) Coordination prior
to meetings, defined as ct = 1/N
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t . More co-

ordination is required to organize meetings during weekends than during weekdays, and larger
meetings do not require additional coordination per participant. (C) Ego view of communities;
we observe overlapping and hierarchically stacked structures. (D) The temporal complexity
of participation for the cores in panel C. Time runs on the x-axis and each horizontal row of
data corresponds to activation of a core. Gray and purple regions correspond to public holidays
and weekends, respectively. We summarize information within this panel using time-correlated
entropy (14).
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and weekends, respectively. We summarize information within this panel using time-correlated
entropy (14).
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criterion: They have higher energies in the ex-
perimentally biased optimization.

For the proteins in our set in the ~30-kD
molecular-weight range, the computed structures
are not completely converged and have large dis-
ordered regions. This is clearly a sampling prob-
lem because the native structure has lower energy
(Fig. 4C and fig. S3); even with the NMR data as
a guide, Rosetta trajectories fail to sample very
close to the native state. Increased convergence
on the low-energy native state can be achieved
either by collecting and using additional experi-
mental data (1ilb_2 in fig. S3) or by improved
sampling. Though at present the former is the
more reliable solution, the latter will probably
become increasingly competitive as the cost of
computing decreases and conformational search
algorithms improve.

We have shown that accurate structures can
be computed for a wide range of proteins using
backbone-only NMR data. These results suggest
a change in the traditional NOE-constraint–based
approach to NMR structure determination (fig.
S4). In the new approach, the bottlenecks of
side-chain chemical-shift assignment andNOESY
assignment are eliminated, and instead, more back-
bone information is collected: RDCs in one ormore
media and a small number of unambiguous HN-
HN constraints from three- or four-dimensional
experiments, which restrict possible b-strand regis-
ters. Advantages of the approach are that 1H,15N-
based NOE and RDC data quality is relatively
unaffected in slower tumbling, larger proteins and
that the analysis of resonance and NOESY peak
assignments can be done in a largely automated
fashion with fewer opportunities for error. The
approach is compatible with deuteration neces-
sary for proteins greater than 15 kD and, for
larger proteins, can be extended to include
methyl NOEs on selectively protonated samples.
The method should also enable a more complete

structural characterization of transiently popu-
lated states (25) for which the available data are
generally quite sparse.
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Limits of Predictability in
Human Mobility
Chaoming Song,1,2 Zehui Qu,1,2,3 Nicholas Blumm,1,2 Albert-László Barabási1,2*

A range of applications, from predicting the spread of human and electronic viruses to city
planning and resource management in mobile communications, depend on our ability to foresee
the whereabouts and mobility of individuals, raising a fundamental question: To what degree is
human behavior predictable? Here we explore the limits of predictability in human dynamics by
studying the mobility patterns of anonymized mobile phone users. By measuring the entropy of
each individual’s trajectory, we find a 93% potential predictability in user mobility across the
whole user base. Despite the significant differences in the travel patterns, we find a remarkable
lack of variability in predictability, which is largely independent of the distance users cover on a
regular basis.

When it comes to the emerging field of
human dynamics, there is a funda-
mental gap between our intuition and

the current modeling paradigms. Indeed, al-

though we rarely perceive any of our actions to
be random, from the perspective of an outside
observer who is unaware of our motivations and
schedule, our activity pattern can easily appear

random and unpredictable. Therefore, current
models of human activity are fundamentally
stochastic (1) from Erlang’s formula (2) used in
telephony to Lévy-walk models describing hu-
man mobility (3–7) and their applications in viral
dynamics (8–10), queuing models capturing hu-
man communication patterns (11–13), and mod-
els capturing body balancing (14) or panic (15).
Yet the probabilistic nature of the existing mod-
eling framework raises fundamental questions:
What is the role of randomness in human be-
havior and to what degree are individual human
actions predictable? Our goal here is to quantify
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Figure 3: Geospatial and social predictability. (A) The distributions of entropy and pre-
dictability for social and location patterns. We find that overall social patterns tend towards
lower entropy than geospatial traces, resulting in higher predictability. The fact that our
location-predictability is lower than previously found (14) is connected to a number of factors.
For example, our location data is based on GPS rather than cell towers and has significantly
higher precision (15) (see section S5). (B) The average daily normalized mutual information
between social and location sequences. Notice a significant drop on weekends. (C) The av-
erage daily entropy of location sequences, which increases on Friday and Saturdays, indicates
increased geographical exploration on those days. (D) The average daily entropy of social
engagements. The entropy is reduced on weekends, indicating a simpler pattern of social en-
gagements, in agreement with Fig. 2A. In panels B-D we use the time-uncorrelated entropy to
quantify the behavioral complexity.
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morning locations are di↵erent from day locations. On Fridays we visit more locations than
any other day, while during weekends we are more stationary. If we, however, consider the
total number of distinct visited places (Fig. S29b) we see that Fridays and Saturdays are
special because those days are used to explore new locations. Therefore, predicting location
during weekends based on routine is more di�cult, since we have higher entropy during
these periods. Our social behavior (Fig. S29c) resembles our mobility, where we socialize
mainly during the day and less during the night. Weekends are again special, interestingly
we here observe a drop in in the number of social states, because we are not required to
go to work or school. Fig. S29d shows that the number of social states decreases during
weekends, meaning our participants reserve weekends to socialize with a few selected friends.

a

b

c

d

Figure S29: Nested histograms showing the temporal aspects of predictability. Binned using daily
and 8-hour intervals (12 am - 8 am, 8 am - 4 pm, 4 pm - 12 am), outer bars (gray) denote days
while inner bars (white) denote 8-hour windows. Bars do not necessary add up, because one can have
an overlap of states between the 8-hour bins. All values are averaged across the student population.
a, Number of average observed locations per bin. b, Total number of visited distinct locations. c,
Average number of social states per time-bin. d, Total number of distinct social states.

We quantify the relation between social and geospatial traces by looking at the normalized
mutual information. Mutual information is a measure of the variables’ mutual dependence,
i.e. how much knowledge of one variable reduces uncertainty about the other. It is defined
as

I(X,Y ) =
X

x2X

X

y2Y
p(x, y) log

✓
p(x, y)

p(x)p(y)

◆
, (S16)

where p(x) is the probability of observing an individual in state x. It is symmetric
I(X,Y ) = I(Y,X) and nonnegative I � 0, and mutual information is zero if and only if p(x)
and p(y) are independent such that p(x, y) = p(x)p(y). Normalized mutual information is
defined as [31, 32]:

I
norm

=
2I(X,Y )

H(X)H(Y )
, (S17)

where H(X) = �
P

x2X p(x) log(p(x)) is the uncorrelated entropy of a behavioral pattern.
According to Figure S30a our social and geospatial behaviors are correlated during the
week, where we tend to meet the same people in the same places. During weekends this
correlation between our social and location behavior is lower. Thus, while the geospatial
behavior during weekends becomes more unpredictable (Fig. S30b) our social patterns
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